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~We—study the flow of two immiscible fluids of different viscosities and

equal density through a pipe under a pressure gradient. This problem has a
continuum of solutions corresponding to arbitrarily prescribed interface
shapes. The question therefore arises, which of these solutions are stable
and thus observable. Experiments have shown a tendency for the thinner fluiad
to encapsulate the thicker one. This has been explained‘hby the viscous
dissipation principle, which postulates that the amount of viscous dissipation
is minimized for a given flow rate. For a circular pipe, this predicts a
concentric configuration with the ﬁore viscous fluid located at the core. A

linear stability analysis, which is carried out numerically, shows that while

this configuration is stable when the more viscous fluid occupies most of the

pipe, it is not stable when there is more of the thin fluid. Therefore the

dissipation principle does not always hold, and the volume ratio is a crucial
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SIGNIFICANCE AND EXPLANATION

When two immiscible fluids of different viscosities and nearly equal
1 , densities flow through a pipe under a pressure gradient, experiments have
{ suggested that no matter what the initial configuration, the less viscous
e fluid eventually encapsulates the more viscous fluid. This property has been
observed for both low and high Reynolds number. For example, in the pipeline
transport of viscous oils, the pressure gradient can be reduced by adding
water because it tends to coat the pipe wall. Another example arises in the
spinning of bicomponent fibers such as nylons, when two polymer melts are
extruded through a tube.

Mathematically, anti-planar shear flow (exclusively axial flow with only
one non-zero component of velocity which depends on the coordinates
perpendicular to the axial coordinate) at low Reynolds number in a cylindrical
pipe of arbitrary cross—-section has a continuum of solutions: for any pre-
assigned interface shape there is a possible flow. Previous theoretical
: attempts to account for the unique observed flow have relied on the 'viscous
i dissipation principle' which states that the most favored configuration is the
s one which minimizes viscous energy dissipation for given volume flux. This
holds for low Reynolds number one-component flow but has no mathematical basis
for bicomponent flows. Rather, we thought that a stability analysis ought
to be done. In fact, for axisymmetric flow in a pipe of circular cross-

1 section, linear stability results for long waves have been calculated
numerically by Hickox (1971). However, he only computed for the case in which
the less viscous fluid is encapsulated by the higher viscosity fluid. He
found this case to be unstable at all Reynolds numbers. He did not consider
the case in which the more viscous fluid is centrally located to test for the
stability predicted by the viscous dissipation principle. We have therefore
reconsidered the linear stability problem but without approximations. The
results shows that the viscous dissipation principle does not hold and
stability depends primarily on the ratio of the radii of the core fluid and
the pipe. Some of our results show qualitative similarities with results of
Yih (1967) on the stability of plane Couette flow. The instability is due to
a wmode which is neutrally stable when the viscosities of the two fluids are
equal. It is also neutrally stable in the limit as the viscosities become
large so that the instability is purely a finite Reynolds number effect. This

can also be seen in Hickox's work and provides a reason as to why the viscous q
dissipation principle is not always in agreement with analysis of stability.
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t. Introduction

ey e

"God is subtle, but not malicious,” lin-teini {

“"Mother nature is a bitch,” Murphy.

A major problem in the theory of bicomponent flows lies in their nonuniqueness: The

position of the interface is one of the unknowns, but the equations of motion may permit an

5 AN i P b 4 5

which

The question thus arises:

infinite number of different interface confiqurations.

interface positions are stable and thus observable? A number of experiments (1-3], (S],

tendency for the thinner of the two fluids to move into regions

{7}, {11~14) have shown a

This has led to the conjecture that the stable flow can be characterized by

of high shear.

a minimization principle [2], [6]. The amount of viscous energy dissipation should be

minimized under appropriate constraints.

This situation

In this paper, we focus on antiplane shear flow in a cylindrical pipe.

has applications in the transport of oil, where the flow rates can be increased by adding

Another application arises in the co-extrusion of two polymers,

some (less viscous) water.

The implications of the "viscous dissipation

e.g. in the manufacture of nylon fibers [2].

principle® are discussed in chapter 2. The flow of a single fluid is described by the

variational formulation

(.t min jﬂ % u(Vu)2 - Gu .

1
ueno(n)
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Here, the velocity has the form u = ulx,y) * e =G 1is a constant pressure gradient, and

Q 1is the cross-section of the pipe. VPor a two-component flow, u is a discontinuous

function of x and y. For each choice of 1, the functional (1.1) has a minimum,

leading to a solution of the Mavier-Stokes equations. We ispose the constraint that the *
volume occupied by each fluid is given. Thus i is allowed to vary in a set of functions

t taking constant values in two regions, whose measures are prescribed. The conjecture

expressed in [2), [6) can then be stated as minimizing (1.1) not only with respect to u,

but also with respect to u. This is equivalent to saying that the amount of viscous

dissipation {or work, since the two are equal) ig minimized for given flow rate, and

ﬁ maximized for given pressure gradient. Alternatively, we may say that the pressure

gradient is minimized for given flow rate, or the flow rate maximized for given pressure

gradient.

Yor a general cross-section of the pipe, we do not know whether this variational
problem always has a solution. We show that the existence of the ainimizer is implied by
an a priori estimate on the length of the interface curve, but we do not know how to obtain
such an estimate. For a circular pipe, the symmetry leads to an enormous simplification.
The minimiszer can be constructed explicitly by elemantary weans. It is a concentric

configuration with the more viscous fluid located at the core.

For this case of a circular pips, we assess the validity of the digsipation principle
by performing a linear stability analysis. This is done in chapter 3. The linearized
equations are solved numerically by Orszag's [8] method of PFourier-Chebyshev expansious.
The linear stability of bicomponent flows was studied previously by Yih (14] and Hickox [4]
using perturbation expansions for long waves. Yih studies plane Couette and plane
Poiseuille flow with a single flat interface. They did not pose the problem of
selection. In these cases the dissipation principle would predict instability for
Poiseuille flow, while it gives no prediction for Couette flow. Yih found instability in
the case of Poiseuille flow; for Couette flow, the stability depends on the volume ratio of
the two fluids. Hickox (4] studied concentric flow in pipes with the less viscous fluiad

located at the core and finds instability. He does not consider the reverse case where the 1

L
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more viscous fluid occupies the core as predicted by the dissipation principle. Both Yih
and Hickox find that the critical eigenvalue becomes imaginary for sero Reynolds number,
hence the stability or instability of the interface is strictly a finite Reynolds number
effect. This shows that encapsulation is a nonlinear phenomenon, governed by the Mavier-
Stokes equations rather than Stokes equations. It may be noted that the Navier-Stokes
equations 40 no arise from a varistional principle.

In our computations, we studied stability tor both cases in which the less and more
viscous fluids are centrally located. The formwer is always unstable. Por the latter, the
most important factor was found to be the volume ratio of the two fluids. When the thicker
fluid occupies wmost of the pipe, we f£ind stability as the viscous dissipation principle
predicts. However, as the radius of the core is reduced past about 0.7R;, where R, is
the pipe radius, we find instability. This shows that in any event the dissipation
principle is not strict. It is parhaps of interest that the solution of design problea
(see §10 of {5)) for the thickness of the water layer which will maximisze the flux of oil
in the core of the pipe is in the region of stability for sufficiently long waves. We find
that the critical radius ratio increases with the wave number of the perturbation. In
reality, instability of short waves may be suppressed by surface tension, which was not
included in our considerations.

The reader may be inclined to think that our results confirm the dissipation principle
wvhen the volume ratio is biased towards the mors viscous fluid. We feel, however, that
great caution is advisable here. The situation we have dealt with has a rotational
symmetry, and symmetric solutions to symmetric problems always have a special status. It
is thus quite natural that the concentric configuration should be preferred over others in
certain situations, whatever the mechanism may be.

On the oth. ' hand, we find that the growth rates of the unstable modes for the ainimum
dissipation case are smaller by one or two orders of magnitude than for the reverse case in
which the thin fluid is at the core. Thus the configuration selected by the dissipation

principle appears to be at least less unstable than some other interface positions.
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2. The diggipation principle
We consider flow in a horizontal cylindrical pipe, whose cross-section Q1 is a

bounded domain with a smooth boundary. The pipe is occupied by two fluids of equal

densities, but different viscosities ¥, and ¥y > u,. We study stationary antiplane

e——

shear flow, i.e., if x and y denote transverse, and z the longitudinal coordinate,

S s e e

then the velocity field has the form u = u(x.y)g‘. The flow is forced by a given pressure

gradient grad p = -G_g.. Por this situation, the equation of equilibrium reads

(2.1) Aiv(uVu) = ~G

with the boundary condition

u=0 on 0 .

(2.2)

Here 1 is a step function assuming the values L

and "2’ On the interface between the

two fluids the wvelocity and shear stress have to be continuous. These two conditions are

automatically satisfied, if (2.1) is taken in the digtributional sense. These continuity

The equations

conditions can also be thought to arise as natural boundary conditions.

(2.1) and (2.2) are the Euler equations for the variational problea

(2.3) mn [ 2uow® - oe .
uea) (2)

Let us denote the integral expression in (2.3) by ru(u). Since this is a strictly convex

functional of u, the following lemma is immediate.

Lemma 2.1: For any u € z."m) such that u > € > 0, there exist one and only one

ue B;(n), which solves problem (2.3), and hence problem {(2.1), (2.2).

This lemma shows that the flow of two fluids has a high degree of nonuniqueness. It

says that for any given arrangement of the fluids there is a corresponding flow field.

Experimentally, however, certain interface positions are observed, others are not. The

question thus arises, which configuration of the interface is stable.

McLean [6] and Bverage (2] have suggested that the stable solution may be the one

which minimizes (2.3) also with respect to u, if, say, the volume occupied by each fluid

is given. That is, u is permitted to vary in the class of step functions
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¢ = (uz + (u"-ﬂ.‘,)xn1 |91C Q wmeasurable, |n1| = m}

vhere = 1is a number which specifies the volume ration and Xq denotes the characteris~
1

tic function of 2.4 i.e., Xq (x) =1 when x @ f, and x, (x) = 0 otherwise. If we
1 1
denote by D the rate of viscous dissipation, and by W the mechanical work done by the
fluid, then
1
!‘u(“) - 2 D= .
Tor any steady flow, we have D = W, and hence the flow that minimizes 'u is the one
that maximizes D or W. Also since W=G ]n u, it maximizes [0 u, the volume flux of
the fluid.
In general, we have no proof that the problem
min F (u)
1 u
uo(ﬂ)
ued
always has a solution. A minimizer does exist, however, if we impose an a priori boundary
on the length of the fluid interface. TFor thias purpose, let us define
s - {ned| Por any € > 0 there is a set of at most [L/€) + 1
closed disks of radius € which completely covers 3‘21) .

This condition is a mathematical rigorization of the statement that the length of 3(1'

is less than or equal to 2L.

Theoram 2.2. (due to M. Renardy)

* 1
There exists u @ OL and u @ nom) such that

*
4 .(“ ) = ain r“ (u) .
» ““L

ues, (2)
Proof: Let un, u" be a minimizing sequence. Then clearly {“n) is uniformly bounded in
u;m) and hence has a weakly convergent subsequence. We shall show next that any sequence

W™ in ’L has an almost everywhere convergent subsequence whose limit is again in .L'




To sea this, let € > 0 bhe given. Mor each 0", we have at most [L/c] + 1 e-~disks
. n n
covering 3““. Denote the centers of these €~disks by M, Hn....,n » We can now
1 n n n n v o2 (L/e)+s

k
extract a subsequence M such that H1 . My ""'"[L/cl*i converge, say, to .

“ Then, for any fixed 8 and k large enough, the boundary of 91k is

1""'"[L/¢)+1'

covered by (c+8)-disks centered at Mypeos M and thus by a set of measure

[r/e)+1
l(t#&)z(lhltl + 1). The complement of this set consist of finitely many components on each

of which the unk are constant for k large enough. Hence we can extract a convergent
subsequence there. Repeating this arqument for a sequence e- such that cm + 0 and
using the standard diagonal argument, -n.tlnd an alwmost everywhere convergent subsequence
of (1"}, Now assume u” e ’. u" + u almost everywhere and u f ¢ - Then there is some
€ > 0 such that the boundary of ﬂ'(u) = {(x,y) e Q, pix,y) = u,} cannot be covered by
{L/e] + 1 €-disks. If that is so, then there is a finite number P,,P,,...,Py of points
in 301(u) which cannot be covered by ([L/c) + 1 e~digks. FKowever, for any § > 0, and
any kx = 1,,.,,N, there is a point 0: e an: in £he §-neighborhood of P, If n is
chosen large enough., Since un e .L' it follows trat the p: can be covered by

{L/€] + 1 e-diska, and hence that P, are covered by (L/€] + 1 e+8-disks. Letting

8§ » 0, this yilelds a contradiction. Thus by extracting convergence subsequences, we find

u" +p a.e. and W e weakly in H;(ﬂ). It is an easy consequence that

1 1 n

“n - (u")- yn= n- + Moreover there is a sequence v of convex combinatins of the

1
u?  guch that vn + u strongly in HO(Q) and an + Yu almost everywhere. Since the
functional
X(n,u) = [o nlovw? - au

is convex, we have

lim x(ﬁ“.v“) € lim x(n",u") »
nee ne.

where ;n is an appropriate convex combination of the nn. According to Fatou's lemma, we
have

P () = K(n,u) € Lim K(A",v") € Lim R(n",0") = Lim P _(w") .
o me ne n*s y

This proves that the pair (u,u) ile a minimizer,

-6~




For the special case of a circular pipe, an elementary argument is possible. The
following modifies an idea of Everage (2]. Let R be a circular disk, and let ug be the
solution of Auo = -G, uolm =0, Weput u= ;2 + u. Then the integral in (2.3) is equal
to

In Vu %u - Gu

d e — 2
+ I“z 2 ¥y () A, (Vu,)

1 =2 1 2
+ ,{n' 2 ¥y (T - B, (Vu,)
where ﬂz - 0\01 is the region occupied by high viscosity fluid. ‘The first of the
sxpressiong is zero. The term
1 2 1 2

Jo = (o) + [ —— (Vu)* is

02 2"2 ° n‘l 2"‘I 0
maximal if ﬂz. the region of higher viscosity, is where (Vuo)2 takes its smallest
values; i.e. if az is a disk in the center of the pipe. In this case an‘ is a line on
which u, is constant. If we then choose W =0 1in the outer region, and u = const. in
the inner region such that u is continuous, then the continuity of velocity and shear

stress across the interface is satisfied. The expression

) 1 bt § 1 -, 2
fq 3 ¥,(%0 +fa ¥ W
2 1
becomes zero, which is clearly its minimal value. We have therefore proved

Theorem 2.3.
If Q@ 4is a circular disk, then
min I -}u(Vu)z - Gu
1
ucllo(a)
ued

is attained for a concentric configuration with the higher viscosity in the inner region.

-7-
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3. Linear Stability
We consider a circular pipe of radius Ry and a basic flow given by an axial velocity

G 2 2 2
'1 = ‘u1 {m Rz + (I-I)R1 r) 0¢< rg R‘
G 2 2
(3.1) '2-‘“2 (Ry = ) Ry € r <R,
m= u1/u2 .

Rere Bae U, are the viscosities of the fluids tﬁ the inner and outer region, and G is
the applied pressure gradient. We superimpose an infinitesimal disturbance which is
periodic in the axial direction and use a Pourier expansion in the azimuthal direction; we
therefore represent the disturbance by

(u,v,w;p)exp(-iact + iaz + in 0) .
where u, v, w denote the radial, azimuthal and axial velocities and p is the
pressure. The atability equations are derived from the Navier-Stokes equations plus the
conditions that velocities and tractions are continucus at the interface. From these
conditions the following eigenvalue problem for ¢ 1is obtained [4] (for simplicity, we put

the density of both fluids equal to 1):

2
i@ (W-cju = -p* + u[&-(ru')' - E—fl u - azu - 21:'1
r r

2
n +1 2 2inu.
3 v a v ¢+ 5 )]
r r

(3.2) 2

ia(W-c)w + uW' = -iap + u[% (rw')* = 53 w - azv]
r

1a(W=c)y = = i%z + u[% {xv*)' -

(ru)’ 4+ inv + riaw = 0 .

The boundary and interface conditions are

e RN B B et o

LS

2 2t
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e

us vsww=( at r-lz

\
vl = [u]l =0
p) = 2[uv’)
(3.3) Wv'l + - (nu-v) ] = 0 > at ran
1
uw'] + iaufy) = 0
afw']) + (W-c)iafw] =0 .
J

Hexre a prime denotes g;, f ] denotes the difference between the values of a quantity on

both sides of the interface, and W is given by (3.1).

4. Numerical calculations
4.1. Method of calculation

We eliminate w and p from the third and fourth equation in (3.2), so that the
problem reduces to finding u and v from the remaining sguations and the boundary
conditions (3.3). When eliminating w from the fourth equation, we divide by r, thus,
even if we impose the condition that u and v are smooth at r = 0, we allow w to
have an (unphysical) % = gingularity. The third equation in (3.2) has a reguiar singular
point at 0, and =1 is a root of the indicial equation precisely for n = 1. Since the
second root is +1, the unbounded solution generally behaves like -:-4' ar ln r near
r = 0. It can be shown that the coefficient a of the logarithmic term vanishes iff
c= I'(O) - 31\101- This appears in our calculations as an extra eigenvalue for n = 1,
which must be dismissed as unphysical.

Por simplicity, we take the inner radius R; equal to 1. We express the radial
dependence of the disturbance as a linear combination of Chebyshev polynomials T,(r) =
cos(m arccos r) as suggested by Orsszag (8] and truncate. Hence the radial velocity is

N

u= ¥ u,T (1) o< <1
w=0

N
u-lo un'l'm(r) 1<r‘k2

" ———
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where ¥ = -1+ HEY 100 fron <1 to 1. The terms of highest differestial order
2

4 3

are ru'''* and r’v"' in the first equation of (3.2) and r u'*' and rzv" in the
second equation. We would like the terms u''‘'’ and v''' ¢to be approximated to the same
degree. Since we chose u to be an Nth degree polynomial, both terms are of degree

W=4 if v is a polynomial of degree W - 1. We thus put

II-I
v= v T (r) 0<cr< 1
=0 **
B=1 -
v= § AXE T<rcR, .
=0

If the azimuthal number n is even, then u and v must be 04d functions of r
(consequently p and w are even), if n is 0dd, then u and v are even. Consistent
with this, the sums in the inner region are restricted to odd (or, resp., even) Chebyshev
polynomials. The expressions for u and v are inserted into the equations, which are
then truncated at orders N - 4, N - 3 resp. PFor convenience, we take N to be odd. In
the outer region, we then have 2N + 1 unknowns and 20 - 5 equations. 1In the inner
region, wve get N + 1 unknowns and@ N - 2 equations if n is 0dd, while we get N
unknowns and N - 3 equations if n is even. Together with the 9 boundary and
interface conditions, this yields 3N + 2 (for n odd) or, 3N + 1 (for n even)
equations and unknowns.

The eigenvalues c of the resulting matrix equation were computed in complex double
precision on a VAX/VMS VO2 gystem using the IMSL routine EIGEC. The flow is unstable if

the imaginary part of ¢ is positive.

4.2. Accuracy and convergence

We compared the eigenvalues for the one-fluid case u1 -y, with the results of

Salwen and Grosch (9] and Salwen, Cotton and Grosch [10]. For n = 1, they list four

GR3

eigenvalues vich the smallest imaginary parts at Reynolds number Re = -—§ = 100 and
LN

Bmn I 2caciagr e
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higher, to $ decimal places.

The velocity scale

4§
are mainly interested in low Meynolds numbers, 80 we checked our calculations at

truncated at N = 19 for various values of Ry to be used in bicomponent flows.

comparison is shown in figure 1.

o fixed at " and “2 - 1, We

Re = 100

A

Yor other asimuthal modes and lower valuss of W, our

eigenvalues were checked against graphs published by Salwen et al. At best, we can read

their graphs to 2 digits, and our results for N = 19 agree within that accuracy. Our

values for Re = 10 and 100 are shown in figures 2 and 3.

rigure 1

Re = ong/cu’ - 100 ,

Velocity scale = Gvgﬂu -9

mode 1
al.: - q
Ry M [} eigenvalues B
S

Published by 1 |.0% «04 |.57256,-.14714|.55198,-,37446.78735,~.47946 |.66247,~.74907
Salwen, Cotton & Grosc
our computation s [.08 |.008 . . - +66248,~.74908
with N = 19, ll.‘ - |l2 2 (.02 .02 b +58199,~,37446 " +66248,~-.74907

h.28[.0125 (.32 «57254,-. 14716 |.55214,~.37448 | . 78736,~.47950 {.66220,~,74907

|

Comparison of our one-fluid (u, - uz) eigenvalues with those published
by Salwen et al for mode 1

and

M = 100,




Uy =, = 0.16
.2 = .6
G = 0.24
=19
sigenvalues

+66676,-1,5778 | .81338,~ 2.6913 | .66657,- 5.0195 | .72389,~ 7.1393 | .66666,~10.448
+49106,-1.3935 | .76202,~- 2.8073 | .62772,~ 4.8498 | .70356,~ 7.2282
«40791,-2,6274 | .76307,~ 4.2327 } .57022,~- 7.0040 ] .71238,~- 9.6639
«36440,-4,0905 | .73178,- $5.9084 | .53554,- 9.5574 | .70101,-12.372
«33513,-5,7962 | .69400,~ 7.8343 | .50882,~-12.289 «68325,-15.348
«31324,-7.7438 | .65689,-10.006 .4865%2,~15.2681 +66345,~18.587

Our one-£1uid eigenvalues for modes 0 to 5 at Re = 10 which can be
compared with published graphs of Salwen et al

-12~
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rigure 3

Re = 100 al?’ = 1.0 w=19 Uy,

Mode Ry [ G | eigenvalues

L e e
'

0 [1.25].0125].032 | .68626,-.27345 [.81160,~ .28413] .64648, |.72999, |.66679, |.69394,
~ 45939~ .73274| -1.0274| -1.3568

<02 <02 «68627,~.27345 |.81160,~ .28413] .64647, ;72993. 66663, |.69444,
- 45937~ .73276| -1.0277| ~1.3579
L] - L] [ ]

o
~N
B
o

e v a1

$.0 ;.05 [.008 . .

2 |[1.25]/.0125].032 | .49400,-.25600 |.70711,~- .62217] .56483, | .68056, ;
i - .58500|-1.0059 i

2.0 '.02 .02 +49400,-.25600 [.70710,~- .62217| .56482, | .68051,
- .58498]-1.0061
.08 «008 . .70710,- .62218{ .56482, | .68052,

i 5.0
: - .58497|-1.0062

!
)
i

3 [1.28.0125].032 | .44087,-.39187 |.64116,~ .71996| .56903, |.67818,
. - .89443|-1.2737

2.0 .02 .02 «44068,-.39189 {.64097,~ .71991| .56913, | .67734,
- .89404(-1.2767
.08 .008 . .64096,~ .71990| .56914, [ .67722,
- .89402]~-1.2769

-

4 1.25;.0125 «032{ .40024,-.55701 {.62004,~ .88366| .53298, |.66487,
; ~1.1892 {-1.5714

2,0 .02 «02 | .40024,-.55701 |.62006,- .88365|.53294, | .66482,
-1.1892 ;~1.5714
3.0 .05 [.008| .40023,-.55702 |.62007,~ .88361|.53301, |.66372,

f
l
'
]
'
| -1.1892 |-1.5719

— -_— —

1
S 1.25;.0125 <032 .36772,-.74937 |.59648,~1.0844 | .50485, ;.64873,
‘ ~1.4990 |[~-1.8911

2.0 {.02 .02 036772,-.74934 |.59647,-1.0845 | .50473, | .64868,
-1.4986 {-1.8919
«0S .008 - «59644,-1.0845 | .50458, | .65052,

-1.4987 | ~1.8920

——— U U

:’i 5.0
!

Our one-fluid eigenvalues for modes 0 and 2 to S5 at Re = 100 which
! can be compared with published graphs of Salwen et al.
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The instability due to a jump in viscosity is governed by an interfacial mode, which,
st B, =u,, is c = W(R(), as can be seen from the last interface ocondition ia (3.3).
The value of ¢, and in particular its imaginary part, is typically smaller by orders of
sagnitude than the remaining eigenvaluss. WNence ¢ will generally be approximated less
well than the other sigenvalues. 8ince we are mainly interested in the eign of Im ¢, we
are satisfied with 2~digit-acouracy.

Appropriate Reynolds numbers for the inner and outer fluides are N t = !’(O)I,/u 1
and Re 2 = 'z(‘*')‘z”z respectively. In our figures, Ne will denote a reference
Reynolds number \'z(t!)lzln2 in analogy with the one-fluid flow, and “wvelocity scale” will
refer to W,(0). The im(c) is proportional to the velocity scale so we have chosen
W, (0) = 1,

Pigure 4a to 4e display samples of convergence tests. There are thres main
features. Pirst, since we used an equal nmber of modes in the inner and outer regions, we
expect convergence rates to worsen as 31/32 Roves away from 0.5. PFigure 4a compares
Ry/Ry = 6.5 with 0.2. At Ry/Ry = 0.5, all modes have converged to at least 2 digite
by W= 19, At R1/!2 = 0.2, ¥ = 39 {s required for similar accuracy for modes 1 to
4. Alsgo, as R1/ll2 + 0, im(c; *+ 0 80 round-off errors enter. Our method of expansion has
an accuracy of infinite order so that once imic) has converged to 2 digits, convergence
to more 4igits will occur for values of W which are not much larger.

Secondly, at low Re, convergence is worse for the higher modes because im(c)
decreases fast in magnitude as mode number increases. Refer to figure b for n,/az = 0.6,
“‘2 = 0.1, Re = 0.1. However, computations need not be done for very small Rs because
im(c) 1is proportional to Re in the limit as Re » 0. Figure S shows that this low Re
reagime extends up to about Re 1, Re 2 ~ 10, or Re ~ 1 for the values of u,/u2 we
consider. Por higher Re (figure 4c) the magnitude of im(c) is similar for all modes.

¥ote that Ne 1 increases as u1m2 decreases and this accounts for the slower

convergence at smaller u‘/uz, (see figure 4d). At Re = 1000, the magnitude of the
interfacial mode is similar to that of the stable eigenvalues associated with one-fluid

flow. Convergence improves for given o and Ry/R, as u'/\iz increases.

14~
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Convergence tests
Velocity Scale = 1

Pigure 4a

TR M (NS T v

Re = 100 , ﬂlati

e

0.5 0 1 [2.3199, -.80908m-1
+34 [1.0456, =.99460B~1
+75041,-.203958-3

2.3200, ~.809608-1
1.0‘5‘. «.994598~1

+75041,~-.283858-)

1.2 | 74972, .27682K~-3

«74972, .276768-3

0.6|0,1,2].2 to 2| agree to at least 2 digits for W = 19 & 23,

1 : 0.2 «2 [1.1062 ,-.321508-2 1.1062 ,~.321658-2
= +8 | .96904,~-.245392-3 +96904,~-.24561E-3

é +8 | .96209,~.145943-3 +96234, .445588E-S] .96236, .161572-4
) 1.2 | .95826, .16343E~3 «95806, .44109E-4 | .95805, .348776E-4

: e2 [1.0021 ,=.531418-3](M=23) ,96515, .19951E-3 | .95995, .11274E-3 |.96002, .11325p-3

: «4 [|1.0432, .80144R-2 +95997,-.541698~4 |.96001,~.53577E-4
|
B

i

: Pigure 4b

Re = 0.1 , 05 = 0.1
Ry/R, mode u1/n2 e
=19 =23

3 .8 64668, .27404E-6 | .64665, .32850R-6
1.2 «63501,~.121128-6 | .63501,~.989268~7
4 -8 64327, .32384B-7 | .64327, .52089E-7
1.2 «63766, .10883R-7 | .63763, .10965E-7




Pigure 4c

Me = 1000 QI, = 1

Ry/Ry| modelu A e
w=19 N=23
0.8] 0 2 +93533,-.21227 1.0734, =-.22125
4 «47541,-,.944398~1 -47743,~,95378R~1
«6 44044, ~.282488~1 «44029,-,281758-1
1 6 46588, .61035E-1 «46955, .514542-1
2 8 44034, .39269%-1 43580, .365658-1
3 6 42012, .2076€5E-1 -41937, .26393B~1
Pigure 44
Re = 100 cl2 =1
; R,/R, -odolu‘/u c
! N=19 N=23
0.9 |4 .2 28227, .41421E-1 «27855, .43170B-1
.8 «19747, .17079E-2 « 19747, .170792-2
1.2 «18410,~.725862-3 .18410,-,725908-3
0.6 |0 2 « 74558, .19535p-1 «7462¢, .19216E-1
-4 67284, .866058-2 67283, ,86810E-2
1.2 63835, .37367k-3 .63938, .37367k-3
4 2 .71083, .28060E~1 «71152, .28025K-1
o4 .65854, .94602-2 .65853, ,94671E-2
1.2 63931, .403202-3 «63931, .40220%-3




rigure 4e

Re = 100 onz = 10

s st et NP

i

UMy e
w=19 N=23
0.6|0 2 «74558, . 19535R=1 + 74624, .192168~1
4 67284, .86605R-2 67283, .868108~-2
1.2 +6383S,.373672-3 63835, .373678-3
4 2 71083, .28060R=1 71182, .280258~-1
4 65854, .946020-2 +65853, .946712~1
1.2 «63931, .40320R-3 63931, .403208~3
0.9!0 .2 +30638, .23248K~1 «30454,.209578~1
4 «23388, . 10908R-1 +23383, .107568-1
1 2 +30903, ,23255-1 «30379, .214458-1
Re = 1
Ry/Ry| mode u1/u2 c
N=19 N=23
«38508, .103638-1 same to all digits

0.8 lo ' .2

Convexgence tests for velocity scale
N is defined in §4.

interfacial eigenvalue,

1, R1 = 1, ¢ {is the

;
{
3
%.
:




Figure S
Table of ¢
clz - 1,0
lz - ‘c%
It u1/\|z =1 , ¢c= .64
llodou,/\u Re = 0,1 Re = 1.0 Re = 10 Re = 100
N=19 =21 »=19 =19
0 .2 97455, .101108=-2].97610, .98976E~2]1,0332, .27546%2-1 |.9%5413,-.21492
4 80551, .456768-4] .80554, .45570B~3| .80832, .36205E-2 | .84021,-.44267R~1
N 3 «72214, .26374R-3|.72218, .26330E~4| .72243, .22082%-3 | .73259,-,944792-2
.8 +67266,~.544300~6] .67266,~.544658~5| .67270,-.57955B-4 | .67521,-.22710R-2
1.2 .61692, .78588%-6).61692, .78581E~5| .61691, .76910E-4 | .61608, .103158-2
1.4 «59981, .14019E-5|.59981, .14019B~4| .39980, .14047B-3 | .59873, .16238E-2
1.6 30667, .18428R-5|.58667, .10428E~4| .58666, .18448B-3 | .58554, .20042E-2
1.8 «57630, .215t8R-5].57630, .21518B~4)| .57628, .21531B-3 | .57519, .22602%-2
2.0 +56794, .23670B-5]| .56794, .23670B-4| .56793, .23678E-3 | .56687, .24353k-2
1 2 « 72407, <17313R-2].72494, .17272B-1| .78572, .12558 98511, .23978
-4 .69522, .30367%-3}.69524, .30362B-2| .69752, .29783R-1 . .74489, .11063
6 67276, .945152-4|.67276, .94512B-3| .67257, .93909E-2 | .67945, .55521%-1
-8 «65476, .29109R-4|.65476, .291128-3| .65461, .28955R-2 |.65139, .21604%-1
1.2 «62768,~. 15665R-4| .62768,~. 156658-3] .62778,~.15602B-2 | .63404,~.115368~1
1.4 «61723,-.25033R=4] .61723,~.25031E~3 | .61739,-.249492-2 ; .62850,-,.180118-1
1.6 +60826,~-.309728-4| .60827,-.30971E=-3 | .60645,-.30891R-2 | .62287,-.223178~1
1.8 +60048,~,.348598-4| .60048,~-.348588-3 | .60067,~-.347688R-2 | .61731,~-,255288~"
2.0 +59365,-.374338-4] .59366,-.374332-3 | .59385,-,.373748-2 | .61193,~.2680678~1
2 2 +70888, .60657E-3|.70902, .60625B-2, .72345, .55710E~-1 ; .84503, .13246
4 .68357, .101098-3].683%8, .10108E-2)| .68385, .10050E~-1 ! .70348, .56896%-1
6 +66499, .29953E-4|.66499, .29952E-3| .66493, .29844%-2 | .66489, .23013E-1
8 .65092, .87628E-5|.65092, .87614E-4| .65089, .87317E-3  .64945, .70449E-2
1.2 +63138,-.423088-5 .63138,-,.423482-4 | .63139,-.42222%-3 '.63257,-.33007]—2
1.4 «62447,~.640908-5| ,62447,-.64119B-4 | .62449,~-.63940R~3 | .862630,~.51337%-2
1.6 +61886,-.752112-5| .61886,-.75191E-4 | .61890,-.749938-3 | .62117,-.605158~2
1.8 «61428,-.802218-5| .61428,-.80220E~-4 | .61432,-.800188-3 | .61677,-.64920K-2
2. +61051,-.816598-51.61051,-.81651E-4 | .61054,-.814588-3  .61305,~.66410K-2
o o T s At
3 2 .68296, .27177@-3].68300, .27169B-2| .68732, .26246K~-1 [.76245, +«897828~1
4 66619, .39952E-4{.66620, .39953E-3| .66629, .39836%-2 ‘-67516, «294108-1
6 +65453, .99384B-5).65453, .99380E-4| .65452, .99212E-3 ! .65474, .86695E-2
.8 64615, .23872x-5].6461%, .23872R-4 | .64615, .23830%-3 | .64595, .20913p-2
1.2 +63540,-.731848~6| .63540,-.73179B=-5 | .63540,~-.730168~4 | .63551,~-.612398-3
1.4 «63191,-.831718-6({.63191,-.831028-5, .62925,-.665528-4 | .63205,~-.666365-3
1.6 +62924,-,668158-6] .62924,-.66772R~-5 | .62925,~.665528-4 | .62935,~-.492648~3
1.8 «62719,-.397632-6{ .62719,-.39772R~-5 | .62719,~.395218~4 | .62726,~-.22735%-3
2.0 «62561,-.89712g-7! .62561,-.89892R-6 ' .62561,-.877858~3 | .62562, .681795-4
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66343, .136813-2
«65379, .173332-3
64742, .324588-4
64306, .455783-5
63781, .152302~5
63623, .458163-5
0‘3”7' .17’23"5
«63422, .10719E-4
63360, .132508-4

«65379, .17334%2-4
«64742, .32618%-5
«64306, .459842-6
«63781, .152728-6
63623, .47023%-6
«63507, .78229%-6
«63422, .106238~-5
«63360, .132543-3

66498, .13444E-~1
65383, .17307%~2
64742, .324308-3
64306, .45530B-4
.63781, .15210E-4
«63623, .45795%-4
+63507, .778968-4
63422, .107173-3
0633590 . ‘32“."3

«71072, .625088-1
65797, .14803%-1
64782, .30518E-2
.64314, .43059E-3
«63774, .150038-3
+63609, .44746E-3
63487, .759688-3
«63398, .10450B-2
«63332, .12923E-2

«65157, .740372-3
64662, .812213-4
+64348, .997503-5
+64141,-.622228-6
«63902, .20294E~3
«63833, .575428-5
«63785, .82709E-5

.64662, .812208-35
64348, .99672B-6
«64141,-.615008-7
«63902, .20391E-6
.63833, .573932-6
63785, .82756%-6
63750, .1032e3-S

«63728, .118778-5(.63725, .11907E-4

Table of interfacial
behaviour of ¢ for

eigenvalues ¢ at moderate aR

65219, .733388-2
-64664, .811558-3
«64349, .997525-4
«64141,~.621508-5
«63902, .202843-4
.63833, .57520B-4
63784, .82668E-4
«63750, .103028~-3
«63725, .119048-3

«67915, .434352-1
64867, .74795B-2
.64381, .991022-3
«64151,~.505758~4
.63895, .27092E-3
.63821, .55426E-~3
«63769, .79957E-3
63731, .999132-3
«63705, .11570B~2

showing the linear

Paec— e oia e cin




rigure 6

aR, = 0.1

2

Vel. scale = 1
R, = ‘o%

If £1/h2 1 , c= .64

Mode|u, /1, Re = 0.1 Re = 1.0 Re = 100
W=23 N=21 =19
] .2 1.0278, .76832E-4 [1.0279, .76813E-3 |1.0789, ,115373-1
N} +82497, .15796E-S +82497, .15794E-4 .82722, .833752-3
.6 +73040,~.34319E-6 +73040,-.343142-% +73063,-.377598~3
.8 +67567,~. 18262E~6 +67571, -, 185€o£-3
1.2 +61490, .11602E~6 61490, .11599%-5 .61489, .116308-3
1.4 +59629, .18666E-6 .59629, .18676E-5 .59628, .18703%-3
1.6 +58193, .23024E-6 .58193, .23056x-% .58192, .23076E-3
1.8 .57052, .25857E-6 .57052, .258192-5 .57051, .25833E-3
2. .56123, .275788-6 .56123, .27584E-5 .56122, .27594E-3
1 .2 +73041, .13880E-3 +73041, .13880%-2 . 76520, .1221%
4 | .69982, .28355B-4 .69982, .28352E-3 .69829, .28183E-1
6 | .67567, .99696B-5 +67567, .99666E-4 .67466, .98113E-2
.8 ! +65614, .33240E-5 «65614, .33213E-4 .65578, .32720E-2
1.2 = .62645,-.193528-5 +62645,~.193518~4 +62664, -, 19164E-2
1.4 +61491,-.315598~5 «61491,~.315478~4 +61519,-,313108-2
1.6 +60496, - . 39554E-5 +60496,~.39567E-4 +60529,~,.393378-2
1.8 +59629, -.44965E-5 +59629,~.449622-4 +59664,~.447598-2
2. +58868, -. 48594E~-5 .58868,~.48624E-4 .58903, -, 48453E~2
2 .2 +71491, .S59674E~4 | .71491, .59677E-3 «72743, .56125B-1
4 -68751, .10552E-4 .68751, .10551E-3 +68756, .10494E-1
N ] «66732, .33122E-5 .66732, .33119E-4 +66720, .32955E-2
.8 +65196, .10125E-5 .65196, .10128E-4 .65192, .10079E-2
1.2 +63050,-.51817E~6 +63050,~.519528~5 +63053,~.51756E~3
1.4 +62205,-.80342E-6 +62285,~.80441E-5 .62289,-.80154E~3
1.6 +61661,-.96244E~6 +61661,~.961878~5 +61666,~.95903E-3
1.8 «61148, -, 104558~5 +61148,=. 10459E-4 .61153, -, 10426E-2
2. +60722,-,10832E~5 | .60722,~.10834E-4 +60727,-.108058~2
3 .2 +68607, .27340E~4 .68607, .27346E-3 +69023, .265128-1
.4 66817, .41653E~5 .66817, .41374E-4 .66825, .412658-2
.6 +65566, .89912E~6 +65566, .10766E-4 .65565, .10702E-2
, -8 +64665, .32850E~6 l +64665, .269922-5 +64664, .269458-3
1.2 +63501,-.909268~7 | .63501,-.94725E-6 +63501,-.933312-4
P14 +63121,-.10326K~6 .63121,-.11566E-5 +63121,~-.11630E-3
f1.6 +62829,-.17003R~6 .62829, -. 110252-5 +626829, ~. 108358~3
1.8 +62603,~-.279778~6 +62603,-.84066E-6 +62604,~.86494E-4
2. i +62428,-.490648~7 +62428, ~.51888E-6 +62429,~,.58743E-4
~20-
e - atnane RN O ot o ittt ..
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4 .2 +66492, .13024E-4 .66492, .138228-3 +66646, .135968-1

4 +65470, .177628-5 .65470, .17805E-4 -65474, .17759E-2

.6 +64792, .347292-6 +64792, .344758-5 «64792, .344138-3

. .8 464327, .52089%-7 .64327, .52700%~6 «64327, .52621K-4

: 1.2 +63765, .10965%-7 +63766, .11257E-6 +63765, .11216E-4

i ' 1.4 | .63595, .43785E~7 .63595, .398032-6 .63595, .39672E-4

;] i 1.6 | .63470, .68450E-7 +63470, .71856E-6 +63470, .70698E-4

: | 1.8 .63379, .98872E-7 «63379, .97451B-6 -63378, .993732-4

! | 2. +63311, .133598-6 +63311, .125668-5 +63311, .12454E-3
1 H

Table of interfacial eigenvalues at moderate Re, showing the linear
behaviour of ¢ for small °R2 and a Re.
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Thixdly, we have checked with Rickox's figure 2 (1971) where a 1is small. Hickox
showed that given "tA'z and Ry/R, and small enough a, results for any Re can be
deduced from calculations at one value of Re; namely that im(c¢) 1s proportional to
a % Reynolds number and real (c) is not. His figure 2 shows that im(c) versus
l‘/l2 € 1 for selected values of "1/"2 <1 formodes 0 and 1. The qualitative
behaviour in figure 6 agrees with Hickox's graph. Direct comparison can be made at
By M, = 0.2. In his notation, our im(c) 1s a(c,/1)W (0). Be computes (c,/iR) x 104
vhere R = I'.‘O)l'/\" 80 that with our values at Re = 0.1, u“/u2 = 0.2, Ry/Ry = 0.6 in
figure 6, we obtain (e,/m) x 10‘ = 7.17 for mode 0 and 13 for mode 1 which agree
with his graph. The deviation from linearity in Re at small u,/tlz and Re = 100 is
due to the fact that Hickox's result is a "small a x Reynolds number” result. Thus his
application to ofl-water flows when the Reynolds number is of order 105 would require
extremely small a.

ror large aR the response is very similar for all modes so that convergence tests

2‘
are done for one or two modes. See figure 4e. The im(c) 4is largest at 111/112 =,2 where

convergence is worst for our range.

S. Results

When the Reynolds number is sero, we can neglect the left hand side of the fi.st 1hree
equations in (3.2). Then c occurs only in the interface condition (3.3). By
substituting e iv, - iwv, we can make the equations (3.2), (3.3) real, and since ¢
is a simple eigenvalue, it must De real. Thus Im ¢ vanishes as Re + 0. Moreover, the
equations are invariant under the change U + Ay, p+ Ap, ¢ + Ac, W+ AW for any positive
factor A. Therefore, if the velocity scale and U are changed by the same factor to
keep Re fixed, c¢ 1is proportional to the velocity scale. At low Reynolds number,
therefore, Re c 1is proportional to the velocity scale, while Im ¢ is proportional to
the velocity scale times the Reynolds aumber. B8ince we have normaliszed the velocity scale,
we have Im c~ Re, wvhile Re ¢ tends to & finite limit as Re + 0. This behaviour of

the interfacial mode is very different from that of the remaining eigenvalues, which are
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proportional to :—'- as Re + 0. At very low Reynolds numbers, this leads to severe
numerical problems; however, it seems that we can make Re small enough to be in
the "linearised® range (cf. chapter 4).

On all graphs, dark points represent computed valuss and lines which join them are
interpolants. 8S0lid lines are sometimes used to avoid confusion but they are also

interpolants. WNumbers printed next to the curves denote the azimuthal mode number except

"]
on grapha 7 to 11 where they dencte the ratio ;-1-. In all graphs, the velocity scale is
2

anity. On all graphes, except for graphs 12 and 25, the vertical axis measures the

imaginary part of the interfacial eigenvalue c.

Noderate okz (~ 1), moderate Re (~ 100), \11/112 e (0.2,2)

The sign of im (c) at given Ry/R,, "1/"2 does not appear to be very sensitive to
changes in aR, or Re. For example, at R, = 1.6, compare Re = 1, a = 0.06 (graph 1)
Re = 1, a = 0.6 (graph 2), Re = 10, a = 0.6 (graph 3) and Re = 100, a = 0.6 (graph 4).
At Ry = 1.25,5a = 0.8, compare Re = 1 and 100 (graphs 5, 6).

The crucial parameters determining the sign of im(c) are R1/R2 and u1/u2.

Graphs 7 to 11 display the behaviour of {m {(c} for modes 0 to 4 at Re = 100 as

']
a function of R,/Rz, keeping L—' constant. Note that in many cases, modes 0 to ¢
2

are not simultanecusly stadbls or unstable. Im (c) decreases to 0 as 11.1/112 decreases

u
from 0.5 to 0 or increases from 0.9 to 1.0. On graph 7, the curve for -‘-1—1 = 0.2 |is
2

plotted from tracking the interfacial eigenvalue from l'l,lllt2 = 0.9. There is a degeneracy

M
for mode 0 between R1/R2 = 0.5 and 0.6 and between ;‘—‘ = 0.2 and 0.4 90 that when the

2
u
eigenvalue is tracked at R‘/n2 = 0.5 from u—‘ = 1 down to 0.2 (figure 7) and then at
2

M
u—‘ = 0.2 from R,/l&2 = 0.5 to 0.9 (figure 8) we arrive at a different eigenvalue than if
2

u
we follow it at Ry/Ry = 0.9 from -u—‘ « 1 down to 0.2. Tracking the interfacial eigen-
2

value for l.llll2 > 0.6 as in figure 9 yields values in column ¢, in figure 8.

-23-
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Figure 7 ‘

R/R, = 0.5 , Re= 100 , aR, =1 , ModeO0

The first column tracks the interfacial eigenvalue c from its value at u‘/u2 = 1 down :
to u‘/‘lz = 0,2, |
The second column tracks a one-fluid eigenvalue cg. recorded by Salwen and Grosch for !

lI‘AII = 1,

Truncation of Chebyshev polynomials is at N = 19. ;

-24-

.Cbnvergenco was tested at ll‘/\l2 = 0.34.

v, %
— c [+
vy s8¢ )
1.0 15,0 .81160,-.28413 i
.98 .75272,~.288828-3 .81567,-.28105
.96 .75556, -. 598088=3 .81988,-,.27791
.94 .75851,-.9297 1B=3 .82322,~.27471
.92 +76159, -, 12859E~2 .82872,~.27146
.9 .76481,~.16692K-2 .83337,~.26815
.88 .76817,~.20822E-2 .83819,-.26478
.86 .77169,~.252832~2 .84319,~.26136
.84 .77538,-.30110E-2 .84838,-.25788
.8 .78330,~-.41033E=2 .85938,~.25078
.6 .83885,~. 14116E~1 .93110,~.21345
.52 .  .87350,-.22825E-1 .97118,-.19946
.5 ' .88404,-.25920%~1 .98254,~-. 19639
.48 .89557,~.29567E~1 .99445,-.19362
.46 . .90825,~.33918E~-1 1.0068 ,=-.19123
44 1 .92234,~.39186E-1 1.0196 ,~.18933
.42  ;  .93815,-.45686E-1 1.0322 ,-.18807
.4 ' .95619,-.53912E-1 1.0440 ,-.18751
.38 | .97740,-.64703E-1 1.0531 ,-.18740
.36 1.0040 ,~.79646K~1 1.0551 ,-.18568
.34 7 1.0456 ,-.99460E-1 1.0389 ,-.17766
.32 | 1.1013 ,-.98510E-1 1.0100 ,-.18494
.3 © 1.1483 ,=.90943E~1 .99625, ~. 19537
.28 . 1,1953 ,-.84391E-1 .99031,-.20426
«26 | 1,246 ,-.78904E-1 .98896,-.21315
.25 1.2734 ,~.76548E~1 .98945,-.21787
.24 ’ 1.3027 ,=.74462E-1 .99050,-.22279
.22 1.3682 ,-.71192E-1 .99400,-.23322
.2 1.4458 ,=.69373E-1 .99928, -. 24420
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The first column c, shows the behaviour of the eigenvalue which was tracked from the

Pigure 8

;- = 0.2 , Re = 100 ,

uR2-1 e Mode 0

"

interfacial eigenvalue in Pigure 7 for R,/R2 = 0.5.
¥or Ry/Ry > 0.6, the eigenvalue which is tracked from the interfacial eigenvalue, for
exanple in Pigure 7 and 9, lie in column Cye
Ry/Ry 1 °2
0.5 1.4458,~-.69373E~1 «99928,-.24428
0.52 1.4632,~-.77384E~1 +98996,~.24079
0.54 1.4788,-.86497E~1 .98087,-.23635
.6 1.515 ,=-.1237% .95413,-,21492
«65 1.5391,-.17317 «92814,-.18215
.68 1.5576,-.21326 .90574,-.15303
7 1.5747,-.24298 .88523,~, 13000
.72 1.5966,-.27279 «85914,~-.10415
.75 1.6388,-,31302 «80715,-.64169E-1
.76 1.6551,-.32463 +78624,-.51010K~1
.78 1.6906,-.34510 +73897,-.25770R-1
+8 1.7298,~.36252 .68444,~-.27817E~2
.84 1.8206,-,.39118 «55456, .32677E-1
.88 1.9309,-.41243 40176, .47700E~1
.9 1.9933,-.41842 «32101, .45619E-1

-25a




rigure 9

Ry/Ry = 0.78 , Re = 100 ,

’ to “1”: - 0.2,

clz =1 , Node 0
The first column tracks the interfacial eigenvalue ¢ from its value at "1/“2 = 1 dowmn

| The second column tracks a one-fluid eigenvalue cg. recorded by Salwen and Grosch for

H‘Nz - 1,
Truncation of Chebyshev polynomials is at Wi = 19
o] . o
96

2

1.0 «39160, 0 +81160,~.2841)
.9 40351, .1439088-2 +.06463,-,26774
.8 41811, .323958-2 «93120,-.25273
o7 «43647, .536473-2 1.0161 ,-.24078
.6 +46035, .778332-2 1.1288 ,-.23714
5 «49279, .10166p-1 1.2929 ,-.26247
4 «53954, .11271B=1 1.3296 ,-.35730
«35 +«571%9, .10191E-1 1.3926 ,-.36389
.3 61257, .63780R-2 1.4675 ,-.36010
2 73897, .25770B=1 1.6906 ,~.34510

Ry/R; = 0.6 , Re = 100 ,

The interfacial eigenvalue ¢ is tracked from its value at u‘/u2 =1 dowm to 0.2.
The one~fluid eigenvalue Cga is tracked closely between u,/\a2 = 0.46 and 0.2.

aR, = 1

2 s Mode 0

¥y

— -} [-}

v, %G

1.0 64 , O

.8 +67521,~.22710R=2

.6 +73259,-.944798-2 .92388,-.520808
.46 +79973,-.26749E=1 1.0639 ,-.40287
.44 .81229,<.314728-1 1.0907 ,-.37493
.42 .82578,-.37217K~1 1.1173 ,-.33474
.4 .84021,-.44267%-1 1.1142 ,=.29304
.30 +85550,~.529938-1 1. 1175 ,-.27473
.38 .87994,~.703098=1 1.1377 ,=.25073
.33 .89628, -.854888-1 1.1584 ,-.23392
.3 +91806,-.11425 1.2022 ,-.20574
.28 +92884,-. 13602 1.2423 ,-.18576
.28 +93956,-. 16804 1.3218 ,-.15788
.23 +94509,~. 18766 1.3087 ,-.14216
.2 +95413,-.21492 1.815 ,-.12375

e




Real (c) decreases with n and approaches W(R,) as
n+ e (ses graph 12). Only for Ry/Ry 2 0.7 was the configuration of minimum diseipation

found to be stadle. At Re = 100, aR_ = 1, compare I,/l2 = 0,7, 0.8, 0.9 (graphs 13, 6,

2
14). All mcdes have the same behaviour for l,/n2 - 0,8, 0.9; they are unstable if

u'/\.z < 1 and stable if u1m2 > 1. However, we find that for u‘/h2 < 1 the seroth mode

can become stable, (see Re = 100, l‘/n2 = 0.2, 0.5 or l‘/llz = 0.8, graphs 15, 16,6).

Large cnz, aoderate Ne, "JA‘Z e (0.2, 2]

As alz increases, the region of stability decreases.

Graphs 17 =~ 18 illustrate the variation with R,/lz at Re = 1, alz = 10, Graphs 19
= 21, illustrate the variation with l'/lz at M = 100, clz = 10, In practice, surface
tension may dampen the instabilities as in the case of flow down an inclined plane (Yih, p.
5032). Por small a, HRickox showed that surface tension effects are negligible except when
l‘/lz £ 0.1. The real (c) for sll modes lie close together. See Graph 22.
lacger We. At Re = 1000, l1/l2 = 0.8, cnz = 1, graph 23 (compare with graph 6) shows
that stability is lost via the 0°" mode.

Larger "1”2 The variation of im (c¢) with ll‘/h2 larger than 2 for given a and
l,/lz is less rapid than for smaller "1’"2‘ 8ee graphs 24-26 for Re = 100,

cla - 1, u,/l2 = 0,5, and Re = 100, alz -1, R,/ll2 = 0,9 and Re = 100, ‘"‘2 = 10,

Ry/Ry = 0.9,

The experiments reported by Rverage (2] are for u‘/h2 ~ & and equal volume fluxes,
from which we compute R,/R, = 0.57. This value also agrees with his photograph.
Calculations in Graph 24 show that for u1m2 > 4, Im ¢ changes very little. It follows
from our calculations (graph 24) that the concentric configuration, in the experiment of
Bverage, should be unstable. However, the growth rates of the unstable modes are very
small, so instabilities may take a longer time to develop than the observation time in
Everage's experiment. It is also possible that the instability only grows to a small

amplitude, and the eventual flow might not be very different from the concentric pattern.




In the case wvhere 11/12 is large, as would be the case in "lubrication® applications
such as ofil transport, we f£ind that concentric encapsulation is the preferred
configuration.

e




GRAPH 1

Twaginary part of c¢ versus viscosity ratio
Re = 1, uR2 = 0.1, Rl/ll2 = .0.6
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Imaginary part of ¢ versus viscosity ratio
m-l,unz-l, Rl/n.z-o.s
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GRAPH 3
Imaginary part of ¢ versus viscosity ratio

Re = 10, ch =1, Rlliz - 016
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GRAPH 4 i
Re = 100 =1 / = 0,6
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GRAPH S5

Imaginary part of c¢ versus viscosity ratio for
low Reynolds number and moderate a.

Re = 1, aR, = 1, R,/R, = 0.8

Modes O to 4 increase as . /u2 decreases from 1 to 0.2
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GRAPH 6

Re = 100, R, =1, R,/R, = 0.8 '

1
\
\
.1 !
\
\ |
I
1
LI 4
1
In(c) 5S¢\ )
v\
.05 N\
T
\\ \
VN
\
\ \\
YOO
\
\\\
~ N
\\ N
0 - SHCR TN E—
0 ~ Q o g
\~\
* ——
~- 1
-.025
r 8 1.2 1.6 2.0
ul/u2
-34-

FRREIPL SR ud e A e i v i i a . S L
PRBAPT Ry T e —— o R . Dbt nmams




G e

GRAPH 7
Re-lOO.aRz-l,lode 0

Numerals next to the curves denote "1/“2'

u
.—ll = 1.6 to 2.0 are identical under graph scales.

2

The curves for

u

Refer to §§5 for comments on u—l'- 0.2.
2
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GRAPH 8

Re-lOO,akz-l,node 1

Numbers next to curves denote

Ri/Ry
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GRAPH 9
Re = 100, uRz = 1, mode 2
*1
Numerals next to curves denote E- .
2

u
The curves for ;l-- 1.6 to 2.0 are indistinguishable

2
under these scales.
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GRAPH 10

Re = 100, cnz = 1, mode 3
Y1
Ratios next to curves denote — .
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GRAPH 11
Re = 100, 'aaz = 1, mode 4
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Numerals next to curves denote u— .
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GRAPH 12

Real part of c versus viscosity ratio.

Re = 10, uRz =1, RI/RZ = 0.6, velocity scale = 1
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GRAPH 13 4

Re = 100, aR, = 1, R\/R, = 0.7. \
The magnification on the right \
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displays behaviour for 1 < s 2. \
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GRAPH 14
Re = 100, ﬂ]./l?.2 = 0.9, oR, = 1, velocity scuale = 1

Curve for mode 3 lies between modes 2 and 4
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GRAPH 15

Imaginary part of c versus viscosity ratio
Re = 100, u32 =1, R1/Rz = 0.2, velocity scale = 1
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GRAPH 16
Re = 100, qkz =1, RI/R2 = 0.5
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GRAPH 17

Imaginary part of ¢ versus viscosity ratio for large a
and low Reynolds number

= 10, Rl/R2 = 0.6

Re = 1, 0R2




GRAPH 18
Imaginary part of ¢ versus viscosity ratio for large a
and low Reynolds number
Rc-l..unz-lo, &1/32-0.8
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GRAPH 19: Re = 100, uR2 = 10, Rllkz = 0.6.
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GRAPH 20: Re = 100, aRz = 10, RI/RZ = 0.8 .
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GRAPH 21: Re = 100, uR2 = 10, Rl/n2 = 0.9
Imaginary part of c versus ul/u2 for large o
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GRAPH 22
Real part of c¢ versus viscosity ratio i

Re = 100, Rllkz = 0.6, aR, = 10, velocity scale = 1

2
Curves for modes 1, 2 and 3 lie between modes O and 4
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GRAPH 23
Imaginary part of ¢ versus viscosity ratio
Re = 1000, aR2 =1, R1/R2 = 0.8, velocity scale = 1
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GRAPH 24
Re = 100, 0R2 =1, Rllkz = 0.5

Im(c) » - e - et - = e~ __2
/ ”h—d?—.‘:r—:---“i
o ”“:}:?:‘. = oTEr i
\
Y
\
y
-.01
)
3\
\
\
-.02 e
S~ - L IR 3 - —— — 41
1 2 4 6 8

ul/u2

-52~




NIRRT

GRAPH 25
Re = 100, aRz =1, RI/RZ = 0.9
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GRAPH 26

Re = 100, Rllllz = 0.9, ullz- 10

"Large a" and "large ul/uz" regime.

Modes O to 4 have the same bshaviour.
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